

The Straw-Tube Tracker of the ZEUS Detector at HERA

Stefan Goers

Physikalisches Institut, University of Bonn goers@physik.uni-bonn.de

Outline:

- > Motivation
- Design and Construction
- Operation and Performance
- > Tracking results

IEEE - IMTC 2004, Como, Italy, 18-20 May 2004

HERA-Physics & Motivation

Investigate proton structure

The Proton

→ Use electron/positron as probe

A scattering process at HERA

The HERA accelerator

- ➤ Electron energy: 27.5 GeV
- ➤ Proton energy: 920 GeV
- ➤ CM-energy: 318 GeV
- > typ. electron current: 60 mA
- > typ. proton current: 100 mA
- Number of bunches: 210
- ➤ Bunchcrossing time: 96 ns

e — p

The ZEUS-Detector

Asymmetric beams:

asymmetric detector

Special emphasis on the forward (proton) direction

Forward Detector

Inner & Forward Tracking Detectors

Central tracking detector:

CTD for $\theta > 25^{\circ}$

Forward tracking detectors:

STT+FTD for $6^{\circ} < \theta < 25^{\circ}$

STT installed in 2001 shutdown

Straw-Tube Tracker – Advantages

STT goal: Improve track finding (efficiency and purity) in the forward direction

 \rightarrow reconstruct tracks down to 6°

- ✓ Straws and detector are self-supporting
 - → no external frames needed
 - \rightarrow sector weight approx 3.6 kg 5 kg

STT-sector

- ✓ Radiation length of whole STT \rightarrow 15% X₀
- ✓ Length of straws (20 cm 102 cm) optimized to reduce the occupancy

 → Average occupancy < 5% (< 15% in DIS jets)
- ✓ Good radiation hardness (> 2 C/cm; also important for operation at LHC)
- ✓ Broken wires are isolated from other straws

The Straws

- Made of 2 layers of 50 μm kapton foil
- > Coated with
 - o 0.2 μm Al
 - $_{o}$ 4 μm C
 - o 3-4 μm polyurethane
- ➤ Cut into ≈1cm strips
- ➤ Wound into 7.5 mm diameter straws
- > Wire is 50 μm Cu-Be
- Sas mixture: 80% Ar / 20% CO₂

The Straws - HV and HV fuses

Fuse works like a resistor (is a thin layer of metal)

- \rightarrow heat dissipation is possible up to a current of $\approx 1 \text{ mA}$
- → at higher currents the metal evaporates ,,the fuse blows"
- \rightarrow resistivity goes from 100 k Ω to G Ω range
- > Does not blow when chamber trips due to bad background conditions

Experience: Fuses working, but a bit too fragile

→Possible problems in a few sectors

From straws to a sector

- Two sizes

 (266 straws and 194 straws)

 glued together as 3-layer arrays
- > Straw positions in array measured r.m.s. of 55 μ m

- > Array glued into a carbon-fibre box
- ➤ Mechanical precision of box and array position in box \approx 200 µm
- Box covered with 17μm Cu foil for screening

From sectors to a detector

- 2 gaps of 208 mm available (equipped with TRD before upgrade)
 - ➤ 48 sectors
 (24 small and 24 large)
- ➤ 4 super-layers per gap (3 layers of straws per super-layer)
- ➤ Polar angles from 6° to 24°
- > Full azimuthal coverage

Systems and Readout

- > Front-end chip: ASDQ
 - → used for shaping and discrimination of signals
 - → threshold setting
- ➤ Re-use of existing readout electronics
- Sixfold multiplexing:
 10944 Straws → 1824 readout channels
 200 ns digital delay between straws
 With 100 MHz FADC → time bin = 9.6 ns

(Solved) Hardware problems I

Problem: First version of driver electronics used diff. TTL technology

- → large signal level (50 mA) on cable between FE board and driver board
- → cross-talk between STT sectors and (STT and FTD)

Solution: use attenuated LVDS

Plugin board for att. LVDS

- → Signal level decreased by a factor of 40
- → No more cross-talk, threshold setting at FE board close to testbeam value

(Solved) Hardware problems II

(Solved) Hardware problems III

STT originally installed in 2001 shutdown HERA shutdown in 2003 used to modify and improve detector

Problem: Vendor soldered tantalum capacitor the wrong way

a blown tantalum capacitor!

After operation period of ≈ 12 weeks the first capacitor blew

Altogether 9 (of 240) capacitors blew

→ These are much more than we had expected

✓ Solved by exchanging them and soldering the right way round

Testbeam vs. Simulation

→ Used 6 GeV electron testbeam at DESY

Measurement: radial distance vs. drifttime

- ✓ Linear relation between drift time and distance (i.e. constant drift velocity)
- ✓ Very good agreement between measurement and simulation

Testbeam: Efficiency & resolution

Single straw efficiency:

$$\rightarrow$$
 98% - 99%

Single straw resolution:

Resolution: $300 \mu m - 350 \mu m$ (with used 100 MHz FADC)

Efficiency and resolution depend on ASDQ threshold setting

Software: reconstruction algorithm

Single Hit in the STT

Example: 10 tracks in STT

Reconstruction procedure:

- ➤ Histogramming method to identify ,,regions of interest"
- Extrapolation with Kalman filter between superlayers
- > Combinatorical search for candidates
- \triangleright Helix fit (decision with best χ^2)
- → Output: One helix per track per STT

Track finding results

as expected

160 Pseudorapidity for STT tracks 80 3 30 20 15 10 90

We are able to reconstruct tracks up to $\eta \approx 3.1$ (corresponds to 5.2°)

Summary

- ✓ STT works well and reliably
- ✓ Design specifications have been reached
- ✓ Detector behaviour is understood
- Currently trying to optimize operation parameters
- > Software improvements necessary

→ Since HERA restart, we take good physics data

Reconstructed tracks in the Forward Detektor